NNH4-65B-HG-R3B

12-port Next Generation PerforMax[™] sector antenna, 4x 698-896 and 8x 1695–2200 MHz, 65° HPBW, 3x RET, 3x SBT

- Antenna optimized for higher gain with superior radiation efficiency
- Superior patterns for enhanced interference mitigation resulting in improved SINR, higher throughput, and more capacity
- Interleaved dipole technology results into an attractive, low wind load mechanical package
- Internal SBTs allow remote RET control from the radio over the RF jumper cable
- Best in class PIM immunity
- Powered by Andrew's SEED® technology (Sustainable Energy Efficient Design)

General Specifications

Antenna Type Sector

Band Multiband

Color Light Gray (RAL 7035)

Grounding TypeRF connector inner conductor and body grounded to reflector and mounting

bracket

Performance Note Outdoor usage

Radome Material Fiberglass, UV resistant

Radiator Material Aluminum | Low loss circuit board

Reflector Material Aluminum

RF Connector Interface 4.3-10 Female

RF Connector Location Bottom

RF Connector Quantity, mid band 8
RF Connector Quantity, low band 4
RF Connector Quantity, total 12

Remote Electrical Tilt (RET) Information

RET Hardware CommRET v2

RET Interface 8-pin DIN Female | 8-pin DIN Male

RET Interface, quantity 3 female | 3 male

Input Voltage 10-30 Vdc

Internal Bias TeePort 1 | Port 5 | Port 9Internal RETLow band (1) | Mid band (2)

NNH4-65B-HG-R3B

Power Consumption, active state, maximum 10 W

Power Consumption, idle state, maximum 2 W

Protocol 3GPP/AISG 2.0 (Single RET)

Dimensions

 Width
 498 mm | 19.606 in

 Depth
 197 mm | 7.756 in

 Length
 1848 mm | 72.756 in

 Net Weight, without mounting kit
 37.5 kg | 82.673 lb

Array Layout

Array ID	Frequency (MHz)	RF Connector	RET (SRET)	AISG No.	SBT RF PORT	SBT No.	RET UID	
R1	698-896	1-2	4	AISG1	1	1	CPxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx	
R2	698-896	3-4	1					
81	1695-2200	5-6	2	AISG2	5	2	СРххххххххххххххххх	
82	1695-2200	7-8	-					
83	1695-2200	9 - 10	_	AISG3	9	3	CP10000000000000000B3	
B4	1695-2200	11 - 12	3					

Gioss of colored boxes are not true depictions of array sizes?

Port Configuration

Electrical Specifications

Impedance 50 ohm

Operating Frequency Band 1695 – 2200 MHz | 698 – 896 MHz

Polarization ±45°

Total Input Power, maximum 1,440 W @ 50 °C

Electrical Specifications

·	R1,R2	R1,R2	B1-B4	B1-B4	B1-B4
Frequency Band, MHz	698-806	806-896	1695-1880	1850-1990	1920-2200
RF Port	1-4	1-4	5-12	5-12	5-12
Gain, Maximum, dBi	15.7	15.8	18.6	18.9	19.3
Gain, dBi	15.4	15.4	18.1	18.6	19
Beamwidth, Horizontal, degrees	70	68	70	67	62
Beamwidth, Vertical, degrees	11.5	10.4	5.4	5.1	4.8
Beam Tilt, degrees	2-12	2-12	0-10	0-10	0-10
USLS (First Lobe), dB	16	15	16	16	17
Front-to-Back Ratio at 180°, dB	30	30	35	37	37
CPR at Boresight, dB	26	21	21	21	22

Page 3 of 4

NNH4-65B-HG-R3B

Isolation, Cross Polarization, dB	25	25	25	25	25
Isolation, Inter-band, dB	25	25	25	25	25
VSWR Return loss, dB	1.5 14.0	1.5 14.0	1.5 14.0	1.5 14.0	1.5 14.0
PIM, 3rd Order, 2 x 20 W, dBc	-153	-153	-153	-153	-153
Input Power per Port at 50°C, maximum, watts	300	300	250	250	250

Mechanical Specifications

 Wind Loading @ Velocity, frontal
 629.0 N @ 150 km/h (141.4 lbf @ 150 km/h)

 Wind Loading @ Velocity, lateral
 190.0 N @ 150 km/h (42.7 lbf @ 150 km/h)

 Wind Loading @ Velocity, maximum
 755.0 N @ 150 km/h (169.7 lbf @ 150 km/h)

 Wind Loading @ Velocity, rear
 433.0 N @ 150 km/h (97.3 lbf @ 150 km/h)

Wind Speed, maximum 241 km/h (150 mph)

Packaging and Weights

 Width, packed
 565 mm | 22.244 in

 Depth, packed
 309 mm | 12.165 in

 Length, packed
 2035 mm | 80.118 in

 Weight, gross
 49.8 kg | 109.79 lb

Regulatory Compliance/Certifications

AgencyClassificationUK-ROHSCompliant

Included Products

BSAMNT-4 – Wide Profile Antenna Downtilt Mounting Kit for 2.4 - 4.5 in (60 - 115 mm) OD round members. Kit contains one scissor top bracket set and one bottom bracket set.

* Footnotes

Performance Note Severe environmental conditions may degrade optimum performance

