NHH-45C-HG-R2B

6-port Next Generation PerforMax[™] sector antenna, 2x 698–896 and 4x 1695–2360 MHz, 45° HPBW, 2x RETs and 2x SBTs

- Powered by Andrew's SEED® technology (Sustainable Energy Efficient Design)
- Antenna optimized for higher gain with superior radiation efficiency
- Designed to reduce SUB 1 alarm triggers with pattern consistency between low band and mid band
- Superior patterns for enhanced interference mitigation resulting in improved SINR, higher throughput, and more capacity
- Interleaved dipole technology results into an attractive, low wind load mechanical package
- Internal SBTs allow remote RET control from the radio over the RF jumper cable
- Best in class PIM immunity

General Specifications

Antenna Type Sector

Band Multiband

Color Light Gray (RAL 7035)

Grounding TypeRF connector inner conductor and body grounded to reflector and mounting

bracket

Performance Note Outdoor usage

Radome Material Fiberglass, UV resistant

Radiator Material Aluminum | Low loss circuit board

Reflector Material Aluminum

RF Connector Interface 4.3-10 Female

RF Connector Location Bottom
RF Connector Quantity, mid band 4

RF Connector Quantity, low band 2
RF Connector Quantity, total 6

Remote Electrical Tilt (RET) Information

RET Hardware CommRET v2

RET Interface 8-pin DIN Female | 8-pin DIN Male

RET Interface, quantity 2 female | 2 male

Input Voltage 10-30 Vdc

Internal Bias Tee Port 1 | Port 3

ANDREW® an Amphenol company

Page 1 of 4

NHH-45C-HG-R2B

Internal RET Low band (1) | Mid band (1)

Power Consumption, active state, maximum $10~\mathrm{W}$ Power Consumption, idle state, maximum $2~\mathrm{W}$

Protocol 3GPP/AISG 2.0

Dimensions

 Width
 457 mm | 17.992 in

 Depth
 178 mm | 7.008 in

 Length
 2437 mm | 95.945 in

 Net Weight, without mounting kit
 36 kg | 79.366 lb

Array Layout

Array ID	Frequency (MHz)	RF Connector	RET (SRET)		SBT RF PORT	SBT No.	RET UID	
	698-896	1-2	1	AISG1	1	1	CPxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx	
Y1	1695-2360	3-4	ू	AISG2	3	2	CPaxxxxxxxxxxxxxxxY1	
Y2	1695-2360	5-6	12					

Class of colored boxes are not true depictions of array stats.)

Port Configuration

Electrical Specifications

Impedance 50 ohm

Operating Frequency Band 1695 – 2360 MHz | 698 – 896 MHz

Polarization ±45°

Total Input Power, maximum 800 W @ 50 °C

Electrical Specifications

	R1	R1	Y1,Y2	Y1,Y2	Y1,Y2	Y1,Y2
Frequency Band, MHz	698-806	806-896	1695-1880	1850-1990	1920-2200	2300-2360
RF Port	1,2	1,2	3,4,5,6	3,4,5,6	3,4,5,6	3,4,5,6
Gain, Maximum, dBi	18.7	18.9	20.3	20.6	20.9	20.8
Gain, dBi	18.4	18.7	20.2	20.4	20.3	20.1
Beamwidth, Horizontal, degrees	45	41	45	44	42	36
Beamwidth, Vertical, degrees	9.2	8.3	5.2	4.9	4.6	4.3
Beam Tilt, degrees	0-10	0-10	0-8	0-8	0-8	0-8
USLS (First Lobe), dB	15	18	15	16	16	15
Front-to-Back Ratio at 180°, dB	30	35	38	38	37	38
CPR at Boresight, dB	17	15	19	24	19	17
Isolation, Cross Polarization, dB	25	25	25	25	25	25

Page 3 of 4

NHH-45C-HG-R2B

Isolation, Inter-band, dB	25	25	25	25	25	25
VSWR Return loss, dB	1.5 14.0	1.5 14.0	1.5 14.0	1.5 14.0	1.5 14.0	1.5 14.0
PIM, 3rd Order, 2 x 20 W, dBc	-153	-153	-153	-153	-153	-153
Input Power per Port at 50°C, maximum, watts	300	300	250	250	250	200

Mechanical Specifications

 Wind Loading @ Velocity, frontal
 1,485.0 N @ 150 km/h (333.8 lbf @ 150 km/h)

 Wind Loading @ Velocity, lateral
 315.0 N @ 150 km/h (70.8 lbf @ 150 km/h)

 Wind Loading @ Velocity, maximum
 1,485.0 N @ 150 km/h (333.8 lbf @ 150 km/h)

 Wind Loading @ Velocity, rear
 1,304.0 N @ 150 km/h (293.2 lbf @ 150 km/h)

Wind Speed, maximum 241 km/h (150 mph)

Packaging and Weights

 Width, packed
 526 mm | 20.709 in

 Depth, packed
 283 mm | 11.142 in

 Length, packed
 2604 mm | 102.52 in

 Weight, gross
 55 kg | 121.254 lb

Regulatory Compliance/Certifications

Agency Classification
UK-ROHS Compliant

Included Products

BSAMNT-3 – Wide Profile Antenna Downtilt Mounting Kit for 2.4 - 4.5 in (60 - 115 mm) OD round members.

Kit contains one scissor top bracket set and one bottom bracket set.

BSAMNT-M – Middle Downtilt Mounting Kit for Long Antennas for 2.4 - 4.5 in (60 - 115 mm) OD round

members. Kit contains one scissor bracket set.

* Footnotes

Performance Note Severe environmental conditions may degrade optimum performance

